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1 magnetic mirrors configuration and the
corresponding adiabatic invariants

We have just found that the magnetic moment µ is a constant of motion for a magnetic
mirror configuration. So far we ignored possible temporal changes of the field strength.
However, we have learned in the previous lecture that for each cyclic degree of
freedom exists one adiabatic invariant I as long as the temporal changes are slow. So
the question is how many different cyclic motion does a particle perform in a magnetic
mirror configuration and what are the corresponding adiabatic invariants?

1.1 The gyro motion around the z-axis

First we consider the motion in the x-y-plane and assume that the Bz component is
constant. This is justified as long as the changes are small compared to ωc and 1/ρc:

m
dvx

dt
= qvyBz m

dvy

dt
= qvxBz

ẍ+ω2
cx = 0 ÿ+ω2

cy = 0.

This describes a harmonic oscillator and we already did this example in the previous
lecture:

I = πmωcρ
2
c ∼

1
2
|q|ωcρ

2
c ∼ µ.

The magnetic moment is the adiabatic invariant for the gyromotion around the z-axis.

*sascha.kempf@colorado.edu

1

mailto:sascha.kempf@colorado.edu


L E C T U R E 7 PHYS5150

1.2 The parallel motion between the two mirror points

�s

�B(s)

�Bm
�s⋆1 �s⋆2

�v∥ = 0 �v∥ = 0
�v∥ = max

Now let us consider the particle’s bouncing motion parallel to the z-axis. In the previous
section we have shown that the force acting on the plasma particle in z-direction is

Fz =−
∂Bs

∂z
µ,

and thus

−µ∂B
∂s

= mv̇‖ = mv‖
∂v‖
∂s

= m
1
2

dv2
‖

ds
,

or

0 =
d
ds

(
1
2

mv2
‖+µB

)
,

implying that

W = µBm =
1
2

mv2
‖+µB.

is constant and Bm is the maximum magnetic field strength. From this follows that the
particle moves in an effective potential µB(s) and

v‖(s) =±
√

2µ
m

(Bm−B(s)).

Using the definition for the adiabatic invariant we get

I = m
∮

v‖ds =
√

2µm
∮ √

Bm−Bds

This defines the so-called second adiabatic invariant J, which is associated with the
periodic bouncing motion

J =
√

2µm
b∫

a

√
Bm−Bds. (1)

As an application let us consider the case when the field strength of a magnetic
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bottle slowly changes, i.e.

B(s)
slowly−−−→ B

′
(s),

which implies that the energy is conserved. However, the second adiabatic invariant is
conserved, i.e.

√
2µm

b∫
a

√
Bm−B(s)ds =

√
2µm

b
′∫

a′

√
B′m−B′(s)ds.

�s

�B(s)

�Bm

�B′�
m

�b′� �b�a′��a

1.3 Fields with a pronounced axial symmetry

Plasma particles immersed in an axially symmetric magnetic field will drift around
the field axis in closed orbits. Remember that

vE =
E×B

B2 vE , f (q,T )

vG =
T⊥
qB

[
B̂×∇B

B

]
vG = f (q,T )

vc =
2T‖
qB

[
B̂× R̂c

Rc

]
vG = f (q,T ).

Consider an orbit close to the symmetry axis,∫
C

E · dl =−
∫
S

∂B
∂t

dA,

where we perform the integration along the drift contour

2πRE =−πR2dB
dt

,

or

E =−R
2
dB
dt

.
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E is the azimuthal electric field, which leads to a radial E×B drift

vE =
E
B
=− R

2B
dB
dt

!
=

R
t
,

or

2
dR
R

=−dB
B

.

From this we obtain the third adiabatic invariant

ΦB = πR2B, (2)

which is in fact the magnetic flux.
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